
Manual for AGOS (AmaGle Operating System)

and AGRT (Amagle Runtime)

Ash Hodlan

Date: 13.08.1999

Contents

1 AGOS 3
1.1 Introduction . 3
1.2 Solving Tasks . 3

2 AGR 5
2.1 Introduction . 5

2.1.1 Dictionary . 5
2.1.2 Data types . 6
2.1.3 Key Bindings . 7

2.2 Basic Operators . 8
2.2.1 Assignment . 8
2.2.2 Arithmetic Operators . 8
2.2.3 Mod Assign . 9
2.2.4 Comparison Operators . 9
2.2.5 Boolean Operators . 10

2.3 Basic Functions . 12
2.3.1 print . 12
2.3.2 input . 12
2.3.3 hasinput . 12
2.3.4 output . 13
2.3.5 not . 13
2.3.6 string . 13
2.3.7 int . 14
2.3.8 eval . 14
2.3.9 sleep . 14
2.3.10 secret . 15

2.4 Dot Functions . 15
2.4.1 .length . 15
2.4.2 .substring . 16

3 Flow Control 17
3.1 Introduction . 17
3.2 Methods of flow control . 17

1

CONTENTS CONTENTS

3.2.1 if, endif . 17
3.2.2 else . 18
3.2.3 elsif . 19
3.2.4 while, endwhile . 20
3.2.5 for, endfor . 21
3.2.6 Break . 22
3.2.7 Continue . 23

4 Advanced Data Structures 24
4.1 Lists . 24

4.1.1 Instantiation . 24
4.1.2 Accessing elements . 24
4.1.3 Modifying elements . 25
4.1.4 .length . 25
4.1.5 .add . 26
4.1.6 .remove . 26

4.2 Buffers . 26
4.2.1 Instantiation . 26
4.2.2 Pointer Instantiation . 27
4.2.3 .insert . 27
4.2.4 .token . 28
4.2.5 .base . 28
4.2.6 Pointer Arithmetic Operations 29
4.2.7 .offset . 29
4.2.8 .clear . 30

5 Functions 31
5.1 Function declaration and use . 31
5.2 return . 32
5.3 Recursion . 32
5.4 Limitations . 33

6 Special Behaviours 35
6.1 Integer limits . 35
6.2 References . 35

6.2.1 Assignment . 36
6.2.2 References And Functions 37

7 Network Communication 39
7.1 Description . 39
7.2 Functions . 39

7.2.1 send . 39
7.2.2 receive . 40
7.2.3 nreceive . 40
7.2.4 last . 40
7.2.5 broadcast . 41

2

Chapter 1

AGOS

1.1 Introduction

AGOS stands for AmaGle Operating System.
AGOS features all a modern server-cluster for development and production
needs.

Once a machine has AGOS installed and the automated clustering tool AGCE
(AmaGle Communication Environment) has been configured, clustering, up-
dates, and route-setups happen automatically. This means code which is exe-
cuted in an automated environment for communication can have generic names
automatically set up depending on what the code is set to communicate with.

A tiered security system is also in place. A machine can only send instructions
to machines one level above them and below. This means that data breaches
are less likely to leak all the data in case they should happen.

1.2 Solving Tasks

As a programmer in AmaGle you must keep the following in mind when solving
tasks:

� Unless you are writing a core system daemon (you probably won’t), your
process must terminate when it has solved its task. Your process will be
re-launched when needed automatically.

� Unless the task has fixed length, always rely on the hasinput-function to
figure out if your program should ask for more input.

3

CHAPTER 1. AGOS 1.2. SOLVING TASKS

� If a task asks you to operate on a given number of inputs, you may assume
that the program will only be given that number of inputs.

� Keep your skills up to date with our built-in tutorials and programming
tasks.

4

Chapter 2

AGR

2.1 Introduction

AGR stands for AmaGle Runtime.
Programming on AGOS using the AGR features everything a modern program-
mer requires, such as: syntax highlighting, flow control, automatic indentation,
a modern and fresh text interface, an easy to understand language, and much
more! A simple ’Hello world’ is as follows:

 print (” He l lo world ”) $ Pr in t s out ” He l lo world ”

Language keywords in code listings will be highlighted with bold and blue (such
as print above). When code-relevant characters/words appear in the text,
they will use this font. Comments are declared using $. Anything written
in capital letters inside a code example is a template (such as CONDITION or
FUNCNAME), meaning that something needs to be written there instead by the
programmer in the actual code.

2.1.1 Dictionary

Reference for meaning of various words

Word Meaning
concatenation The act of appending a string (or words) to another, such as

"a" + "b" = "ab". + is, in addition to being the addition-
operator for numbers, also the concatenation operator for
strings.

5

CHAPTER 2. AGR 2.1. INTRODUCTION

Word Meaning
instantiation The act of creating something, such as b = buffer(100)

instantiates a buffer of length 100.
lhs Left hand side of an operation. In a=3, a is the lhs
parsing The act of interpreting text as code, converting it into some-

thing a machine can execute. Can also mean to read some-
thing as something else: ”parsing an string as an int”.

rhs Right hand side of an operation. In a=3, 3 is the rhs
scope A scope can be thought of as an environment. The global

scope is default one where your operations happen. If you
call a function, you will get a temporary scope that is dis-
carded after the function returns. See section 5.4 and sec-
tion 6.2 for more information.

yield(s) The same as printing out
Table 2.1: Dictionary

2.1.2 Data types

AGR has the following data types:

Name Description
string A string declared using quotes surrounding a string of let-

ters and numbers, such as "This is a string". To put a
literal " inside a string, use \". To put a literal \ inside a
string, use \\.

integer A whole number declared using unquoted numbers, such as
42.

boolean A true/false state type. Result of comparisons.
list A list of any kind of data. More information can be found

in section 4.1 - Lists.
buffer A fast processing character-buffer for parsing messages and

more. Further information about these can be found in
section 4.2 - Buffers.

bufferptr A pointer into a fast processing buffer containing an offset.
Further information about these can be found in section 4.2
- Buffers.

null A special value returned from failed operations and func-
tions that do not return anything. Synonymous with
”empty” in everyday language. Evaluates to false if eval-
uated as a boolean. Can be declared by just writing an
unquoted null. Not to be confused with 0, a numeric value.

6

CHAPTER 2. AGR 2.1. INTRODUCTION

Name Description
Table 2.2: Data types

2.1.3 Key Bindings

AGOS has the following key bindings:

Key Action
Ctrl-D Delete everything in input area
Ctrl-O Clean output area.
F11 Decrease font size.
F12 Increase font size.

Table 2.3: Key bindings

DEBUG VERSIONS ONLY (IF YOU CAN READ THIS, IT PROBABLY
WORKS).
THIS WILL NOT BE A PART OF THE FINAL MANUAL.
Some of these will be moved up to the actual key bindings later as they are
properly implemented (like ctr+c).

Key Action
Ctrl+C Rudimentary copy. Copies the entire code
Ctrl+V Rudimentary paste. Removes the entire code and inserts

clipboard
U Node map: unlock node
L Node map: lock node
Ctrl+U Node map: Unlock entire map
Ctrl+L Node map: Lock entire map
Ctrl+M Reset machine (if something is really weird)

Table 2.4: Key bindings for debug

7

CHAPTER 2. AGR 2.2. BASIC OPERATORS

2.2 Basic Operators

AGR features all basic operators you may ever need.

2.2.1 Assignment

= is the assignment operator. It takes the value on the right hand side and
assigns it to unquoted name on the left.

 a = 4
 b = ” h e l l o ”
 print (b)

This example code assigns two different variables and then prints one of them.

2.2.2 Arithmetic Operators

+ - / * % are the arithmetic operators in the language.

 a=3
 b=7
 print (a+b)
 print (a−b)
 print (b/a)
 print (a*b)
 print (b%a)

While the first four of these may be known to most people, the last one is a
special one invented at AmaGle which may require further explanations. The
%-operator is known as modulo. It returns the remainder of a division - in the
example above, 7%3 is 1 because 6 is the highest whole number that is a multiple
of three and smaller than seven, hence it returns 7-6=1.

The +-operator is also defined for strings as a concatenation operator.

 a=”foo ”
 b=”bar”
 print (a+b)

This program will print the following:

8

CHAPTER 2. AGR 2.2. BASIC OPERATORS

 foobar

All arithmetic operators are defined for bufferptrs, but those are defined in
subsection 4.2.6

2.2.3 Mod Assign

All the arithmetic operators can be combined with a equality sign, such as +=.
The += operator sums the lhs and rhs and then assigns the result to the lhs.
Returns the old value of lhs.

 a = 13
 a %= 2
 a += 3
 b = ” Hel lo , ”
 b += ”World”

After this, a is 4, while b is Hello, World.

 a = 3
 b = a += 3

After this, a is 6, while b is 3.

Additionally, ++ is equivalent to += 1, and -- is equivalent to -= 1

 a = 3
 a++
 b = 10
 c = b−−

After this, a is 4, b is 9, and c is 10.

2.2.4 Comparison Operators

AGR has the following comparison operators: == != < > <= >=

Operator Description

9

CHAPTER 2. AGR 2.2. BASIC OPERATORS

Operator Description
== Returns true if the sides are equal, false if the sides are

unequal. Defined for integers and string. Example: 3

== 3 yields true, "string" == "anotherstring" yields
false.

!= Opposite of ==.
< Returns true if the rhs is greater than the lhs, false other-

wise. Defined only for integers. Example: 3 < 5 yields
true, 5 < 3 and 3 < 3 yield false.

> Opposite of <.
<= Same as <, but yields true if the integers are equal - such

as 3<=3.
>= Same as >, but yields true if the integers are equal - such

as 3>=3.
Table 2.5: Comparison operators

Example code:

 print (3 > 5)
 print ((6−3) <= 3)
 print (” Test ” == ” Test ”)

This code will yield the following:

 Fa l se
 True
 True

2.2.5 Boolean Operators

AGR has the following boolean operators: || && ^^

Operator Description
|| Returns true if either the lhs or rhs are true, else false.
&& Returns true if both the lhs and rhs are true, else false.
^^ Returns true if the lhs and rhs are unequal, else false.

Table 2.6: Comparison operators

10

CHAPTER 2. AGR 2.2. BASIC OPERATORS

 print (true | | fa l se)
 print (fa l se && true)
 print (true ˆˆ fa l se)

This code yields the following:

 True
 Fal se
 True

11

CHAPTER 2. AGR 2.3. BASIC FUNCTIONS

2.3 Basic Functions

2.3.1 print

print takes one parameter and prints it out to the machine’s terminal. It is
intended as a help when debugging a program.

 print (” He l lo ”)
 print (3)

This yields the following:

 He l lo
 3

2.3.2 input

input takes no parameters and yields a value that’s being sent as input to the
program.

 a = input ()
 print (a)

This program retrieves what’s been sent to it and prints it out.

2.3.3 hasinput

hasinput (can also be written as hasInput) yields true as long as there’s unre-
trieved input.

 while (hasinput ())
 print (input ())
 endwhile

This code reads from input until there’s nothing left.

12

CHAPTER 2. AGR 2.3. BASIC FUNCTIONS

2.3.4 output

output sends a value to the output. This function is relevant when working on
tasks that run as subprocesses.

 a = 4 + 5
 output (a)

This program does a simple calculation and sends the result of it to the out-
put.

2.3.5 not

Inverts a boolean - true becomes false and vice versa.

 a = fa l se
 print (not (a))

 print (not (a) && true)

This program yields the following:

 True
 True

2.3.6 string

Converts a value to a string

 a = 3
 b = 4
 print (”The number i s ” + string (a) + string (b))

This program yields the following:

 The number i s 34

If given a null, will return the string <null>.

13

CHAPTER 2. AGR 2.3. BASIC FUNCTIONS

2.3.7 int

Converts a value to an integer

 a = ”3”
 b = ”4”
 print (int (a) + int (b))

This program yields the following:

 7

If given a null, will return the integer 0.

2.3.8 eval

eval executes the parameter as code. This allows highly dynamic code execu-
tions.

 eval (”print (\” He l lo \”) ”)

This program yields the following:

 He l lo

2.3.9 sleep

sleep halts execution for the given number of execution cycles

 sleep (5)
 print (” I waited ”)

This program prints out the following after doing nothing for five execution
cycles:

 I waited

14

CHAPTER 2. AGR 2.4. DOT FUNCTIONS

2.3.10 secret

secret takes an int-parameter and returns a security token based on the access
level of the machine.

 print (secret (3))

In this particular case, the output was the following:

 O>NCXKb

However, you will find that the output on your machine will be different -
including each time you run your program.

2.4 Dot Functions

Dot functions are functions take the format VALUE.FUNCTION(PARAMS) or
VARIABLE.FUNCTION(PARAMS). They’ve been designed this way as they are in-
tuitively associated with the data type that they operate on. Dot functions
associated with advanced data types can be found in chapter 4.

2.4.1 .length

Returns the length of a string, list or buffer.

 a = ” Test ”
 b = [1 , 2 , 3 , ” h e l l o ” , 5]
 c = buffer (100)

 print (a . length ())
 print (b . length ())
 print (c . length ())

This program yields the following:

 4
 5
 100

15

CHAPTER 2. AGR 2.4. DOT FUNCTIONS

2.4.2 .substring

.substring returns a part of a string. It takes a starting offset, followed by
a length as parameters. The length-parameter is optional and if not provided,
the rest of the string will be returned.

 print (” He l lo ” . substring (1 , 3))

Output:

 e l l

16

Chapter 3

Flow Control

3.1 Introduction

Flow control is elementary in making computer programs be more flexible, easier
to read and actually able to make decisions.

3.2 Methods of flow control

AGR has three flow-control methods.

3.2.1 if, endif

The format for an if is as follows:

 i f (CONDITION)
 CODEBLOCK
 endif

CONDITION is any expression that can be evaluated as true or false. Such as
true, a==4 or "Hello".
CODEBLOCK is any number of executable code lines. The code CODEBLOCK will
only get executed if the CONDITION evaluates as true.
The conditional if-block is terminated with an endif (can also be written
endIf).

17

CHAPTER 3. FLOW CONTROL 3.2. METHODS OF FLOW CONTROL

Example:

 a = 3

 i f (a == 3)
 print (” a i s 3”)
 print (” This a l s o ge t s executed ”)
 endif

 i f (a == 2)
 print (” This w i l l not get pr in ted because a i s not 2”)

 endif

The output of this program is:

 a i s 3
 This a l s o ge t s executed

The final print will not happen as a is not 2.

3.2.2 else

The else-keyword can be used as follows:

 i f (CONDITION)
 CODEBLOCK
 else
 CODEBLOCK
 endif

When CONDITION evaluates to false, the second CODEBLOCK is executed instead
of the first one.

Example code:

 a = 5

 i f (a == 2)

18

CHAPTER 3. FLOW CONTROL 3.2. METHODS OF FLOW CONTROL

 print (” a i s 2”)
 else
 print (” a i s not 2 , in f a c t i t i s ” + string (a))
 endif

The output of this program is:

 a i s not 2 , in f a c t i t i s 5

3.2.3 elsif

elsif can be to check other conditions in an if.

 i f (CONDITION)
 CODEBLOCK
 e l s i f (CONDITION)
 CODEBLOCK
 e l s i f (CONDITION)
 CODEBLOCK
 . . .
 else
 CODEBLOCK

 endif

If the first CONDITION is false, each CONDITION inside every elsif will be
checked in turn from the top. If one is found to be true, the corresponding
CODEBLOCK will be executed and execution will then jump to the endif. If
no CONDITION is true, the else-CODEBLOCK (if it exists) will be executed in-
stead.

 a = 4
 i f (a == 3)
 print (” a i s 3”)
 e l s i f (a < 10)
 print (” a i s l e s s than 10”)
 e l s i f (a < 20)
 print (” a i s l e s s than 20”)
 else
 print (” a i s g r e a t e r than 20”)

 endif

19

CHAPTER 3. FLOW CONTROL 3.2. METHODS OF FLOW CONTROL

Output:

 a i s l e s s than 10

3.2.4 while, endwhile

The while-keyword can be used as follows:

 while (CONDITION)
 CODEBLOCK
 endwhile

This works almost exactly like the if-statement, except CODEBLOCK is run re-
peatedly until CONDITION is false.

Example code:

 i = 0
 while (i < 5)
 print (i)
 i++
 endwhile

This code will output:

 0
 1
 2
 3
 4

The loop will no longer execute as the condition (i < 5) in the parentheses is
no longer true.

It is important to remember the i++-bit. If you do the following:

 i = 0

20

CHAPTER 3. FLOW CONTROL 3.2. METHODS OF FLOW CONTROL

 while (i < 5)
 print (i)
 endwhile

This code will never terminate as i never changes.

while can also be used to read an arbitrary number of input parameters, see
subsection 2.3.3.
endwhile can also be written as endWhile.

3.2.5 for, endfor

The for-keyword can be used as follows:

 for (INITIALIZER ; CONDITION ; ENDFORACTION)
 CODEBLOCK
 endfor

INITIALIZER is executed when the for-statement is reached. CONDITION is then
checked and if true, CODEBLOCK is executed.
When endfor is reached ENDFORACTION is executed, CONDITION is checked again
and if true CODEBOCK is executed again.
This repeats until CONDITION is false.

Example code:

 for (i = 0 ; i < 5 ; i++)
 print (i)
 endfor

This code is equivalent to the above example while-code. The output is the
following:

 0
 1
 2
 3
 4

The following code prints every other number (starting from 0) up to 10 (but
not including).

21

CHAPTER 3. FLOW CONTROL 3.2. METHODS OF FLOW CONTROL

 for (i = 0 ; i < 10 ; i +=2)
 print (i)
 endfor

Output:

 0
 2
 4
 6
 8

endfor can also ben written as endFor.

3.2.6 Break

break jumps to the end of the inner-most for/while-loop the execution is
currently in.

 for (i = 0 ; i < 10 ; i++)
 i f (i == 5)
 print (” Break ”)
 break
 endif
 print (i)
 endfor

Output:

 0
 1
 2
 3
 4
 Break

22

CHAPTER 3. FLOW CONTROL 3.2. METHODS OF FLOW CONTROL

3.2.7 Continue

continue jumps to the top of the inner-most for/while-loop the execution is
currently in. If it is a for-loop, ENDFORACTION is also triggered.

 for (i = 0 ; i < 10 ; i++)
 i f (i%2 == 0)
 print (” Continue ”)
 continue
 endif
 print (i)
 endfor

Output:

 Continue
 1
 Continue
 3
 Continue
 5
 Continue
 7
 Continue

 9

23

Chapter 4

Advanced Data
Structures

Buffers are used for faster processing of information stored in strings.

4.1 Lists

Lists contain any number of ordered values of any type. They are essential when
performing operations on groups of values.

4.1.1 Instantiation

Lists are declared using brackets - [and] - with comma-separated elements
inside.

 l i s t 1 = []

 a = 10
 l i s t 2 = [1 , 5 , 7 , ” t e s t ” , a]

4.1.2 Accessing elements

List elements are accessed using brackets - [and] - using integer values. Lists
are indexed from zero.

24

CHAPTER 4. ADVANCED DATA STRUCTURES 4.1. LISTS

 a = [5 , 7 , 9]

 print (a [1])

The above code will print the following:

 7

4.1.3 Modifying elements

List elements are also modified using brackets.

 a = [1 , 2 , 3]

 a [2] = 10

The above code would change the list to contain the values 1, 2, and 10.

4.1.4 .length

Length is defined for lists in the common length function in subsection 2.4.1. It
is a crucial method when iterating over a list.

 a = [1 , 2 , ” He l lo ”]

 for (i = 0 ; i < a . length () ; i++)
 print (a [i])
 endfor

Output:

 1
 2
 He l lo

The code above makes it possible to print out any list as it handles an arbitrary
list length.

25

CHAPTER 4. ADVANCED DATA STRUCTURES 4.2. BUFFERS

4.1.5 .add

Any number of elements can be added to the end of a list using .add.

 a = [1 , 2 , 3]
 a .add (4 , 5)

The resulting list will contain the values 1, 2, 3, 4, and 5.

4.1.6 .remove

Any number of elements can be removed from the list using .remove by in-
dex.

 a = [1 , 2 , 3 , 4 , 5]
 a . remove (0 , 1)

The resulting list will contain the values 2, 4, and 5.
It is important to note that order of execution is important: .remove(0,1) is
not the same as .remove(1,0). In the first instance, the element in position 0
is removed first, the list positions are recalculated, followed by a removal of the
element in position 1.
In the example above, .remove(1,0) would result in the list having the values
3, 4, and 5 instead.

4.2 Buffers

Buffers are fixed-length, quick access data structures that are used to process
messages.

4.2.1 Instantiation

Buffers are instantiated using the buffer-function.

 a = buffer (10)
 print (a)

The output from this program shows what data the buffer is initialized with:

26

CHAPTER 4. ADVANCED DATA STRUCTURES 4.2. BUFFERS

 < Buf f e r l ength : 10 data : ” ” >

4.2.2 Pointer Instantiation

Pointers are used to operate on buffers. These are instantiated the following
way:

 a = buffer (10)
 ptr = a [5]
 print (ptr)

After this code, ptr is a pointer pointing at position 5 in the buffer. This pointer
can now be used with various functions.

 < Buf fe rPtr o f f s e t : 5 b u f f e r : < Buf f e r l ength : 10 data : ”
” > >

4.2.3 .insert

.insert can be used to insert strings into the buffer through a pointer. The
offset of the pointer is incremented by the size of the inserted string.

 a = buffer (10)
 ptr = a [5]
 ptr . insert (” t e s t ”)

 print (ptr)

As can be seen from this output, ”test” has been inserted into the buffer and
the offset is now 9.

 < Buf fe rPtr o f f s e t : 9 b u f f e r : < Buf f e r l ength : 10 data : ”
t e s t ” > >

27

CHAPTER 4. ADVANCED DATA STRUCTURES 4.2. BUFFERS

4.2.4 .token

.token returns the string that exists from the pointer’s current offset to the
provided token’s position. It also increases the offset of the pointer used in the
operation to the position after the provided token. If the token cannot be found,
a null is returned instead, and the pointer’s offset is set to out of bounds.

 a = buffer (10)

 ptr = a [0]
 ptr . insert (” t1 | t2&”)

 ptr = a [0]

 print (ptr . token (” | ”))
 print (ptr . token(”&”))

 print (ptr)
 print(”<nul l> w i l l f o l l o w t h i s : ” + string (ptr . token(”&”)

))
 print (ptr)

Output:

 t1
 t2
 < Buf fe rPtr o f f s e t : 6 b u f f e r : < Buf f e r l ength : 10 data : ”

t1 | t2& ” > >
 <nul l> w i l l f o l l o w t h i s : <nul l>
 < Buf fe rPtr o f f s e t : 10 b u f f e r : < Buf f e r l ength : 10 data :

” t1 | t2& ” > >

4.2.5 .base

.base returns the buffer a pointer is pointing at.

 a = buffer (10)
 ptr = a [5]

 print (ptr . base ())

Output:

28

CHAPTER 4. ADVANCED DATA STRUCTURES 4.2. BUFFERS

 < Buf f e r l ength : 10 data : ” ” >

4.2.6 Pointer Arithmetic Operations

All arithmetic operations are defined for pointers. They will affect the off-
set.

 a = buffer (10)
 ptr = a [0]

 ptr += 8
 print (ptr)

 ptr %= 3
 print (ptr)

Output:

 < Buf fe rPtr o f f s e t : 8 b u f f e r : < Buf f e r l ength : 10 data : ”
” > >

 < Buf fe rPtr o f f s e t : 2 b u f f e r : < Buf f e r l ength : 10 data : ”
” > >

4.2.7 .offset

.offset returns the offset of a BufferPtr.

 b = buffer (10)
 ptr = b [5]
 ptr −= 1

 print (ptr . o f f s e t ())

Output:

 4

29

CHAPTER 4. ADVANCED DATA STRUCTURES 4.2. BUFFERS

4.2.8 .clear

.clear clears the contents of a buffer as if it had been just initialized.

 a = buffer (10)
 ptr = a [0]
 ptr . insert (” t e s t ”)
 a . clear ()

 print (a)

Output:

 < Buf f e r l ength : 10 data : ” ” >

30

Chapter 5

Functions

Functions are useful tools for re-use in a program. Functions are isolated snip-
pets of executable code that can be used from elsewhere in the program.

5.1 Function declaration and use

The general template for declaring a function is:

 func FUNCNAME(PARAM1, PARAM2, . . . , PARAMN)
 CODEBLOCK
 endfunc

It can then later be called using:

 FUNCNAME(PARAM1, PARAM2, . . . , PARAMN)

A function can be declared and used as follows:

 func myFunc(v)
 print (” I am a func t i on ”)
 print (” Value r e c e i v e d : ” + string (v))
 endfunc

 myFunc (3)
 myFunc(” whee , f u n c t i o n s ! ”)

31

CHAPTER 5. FUNCTIONS 5.2. RETURN

Output:

 I am a func t i on
 Value r e c e i v e d : 3
 I am a func t i on
 Value r e c e i v e d : whee , f u n c t i o n s !

Instead of writing four print-statements, only two were needed.
endfunc can also be written as endFunc.

5.2 return

return can be used to pass a value back to the outside of the function.

 func double (v)
 return (v+v)
 endfunc

 print (double (3))
 print (double (” r ing ”))

Output:

 6
 r i n g r i n g

5.3 Recursion

You may call any function within a function:

 func recursiveCountdown (i)
 i f (i <= 0)
 print (” Launch ! ”)
 else
 print (i)
 recursiveCountdown (i −1)
 endif

32

CHAPTER 5. FUNCTIONS 5.4. LIMITATIONS

 endfunc

 recursiveCountdown (5)

Output:

 5
 4
 3
 2
 1
 Launch !

5.4 Limitations

A function cannot access a variable that isn’t passed or declared inside the
function. In technical terms: functions have a scope and cannot access variables
in the global scope or other functions’ scopes.
The following code will fail when a is not found inside the function:

 a = 3

 func t e s t ()
 print (a)
 endfunc

 t e s t ()

The following code will not output what the user might expect:

 a = 3

 func t e s t ()
 a = 6
 endfunc

 t e s t ()
 print (a)

Output:

33

CHAPTER 5. FUNCTIONS 5.4. LIMITATIONS

 3

34

Chapter 6

Special Behaviours

This chapter documents important special behaviors in the language.

6.1 Integer limits

Integers in AGR must be between -214783648 and 214783647 (inclusive) when
declared as a variable or parsed using the int-function.
Going above or below these limits in calculations will cause the number ”wrap
around”.

 print (−2147483648 − 1)

Output:

 2147483647

6.2 References

It is important to note that any data structure described in chapter 4 are pass
by reference, while all other data types are pass by value.

Consider the following code:

35

CHAPTER 6. SPECIAL BEHAVIOURS 6.2. REFERENCES

 a = [5 , 6 , 7]
 b = ” He l lo ”

The situation in memory will look like this:

a

b="Hello"

[5,6,7]

What this means is that the string Hello is contained within the scope, while
the list [5,6,7] is outside the scope and is being referenced by a from inside
the scope.

This has consequences for how these values behave in various situations.

6.2.1 Assignment

Read the following code:

 a = [1 , 2 , 3]
 b = 5

 acopy = a
 acopy [0] = 5

 bcopy = b
 bcopy += 1

 print (a)
 print (b)

The output is the following:

 < L i s t l ength : 3 data : [5 , 2 , 3] >
 5

As you can see, the first number in a changed to 5 when it was modified through
acopy. b on the other hand, was not changed.
To understand why, look at this figure that illustrates what the memory looks
like after this code has been run:

36

CHAPTER 6. SPECIAL BEHAVIOURS 6.2. REFERENCES

a

acopy

b=5

bcopy=6

[5,2,3]

However, consider the following code:

 a = [1 , 2 , 3]

 b = a
 a = [” He l lo ”]

 print (a)
 print (b)

The output from this code is:

 < L i s t l ength : 1 data : [He l l o] >
 < L i s t l ength : 3 data : [1 , 2 , 3] >

The reason b is not a is because a has been replaced with a reference to a
different list.

6.2.2 References And Functions

Consider the following code:

 func l i s tMod (l)
 for (i = 0 ; i < l . length () ; i++)
 l [i] += 1
 endfor
 endfunc

 func intMod (i)
 i += 1
 endfunc

 a = [1 , 2 , 3]
 b = 5

37

CHAPTER 6. SPECIAL BEHAVIOURS 6.2. REFERENCES

 l i stMod (a)
 intMod (b)

 print (a)
 print (b)

The output from this is:

 < L i s t l ength : 3 data : [2 , 3 , 4] >
 5

This is what the situation looks like outside the functions:

a

b=5

[1,2,3]

The column represents the scope we’re in. Notice how [1,2,3] is outside of the
scope (with a pointing at it), while b is inside the scope.
So when we call listMod(a), this happens:

a

b=5

[1,2,3]
l

The left box represents the global scope, the right box represents the scope
inside of listMod.
This means that any changes that happen to l actually happen to the same list
that a is referencing.
Meanwhile, this happens inside intMod:

a

b=5

[2,3,4]
i=5

This means that any changes that happen to i inside of intMod do not apply
to b in the global scope.

38

Chapter 7

Network Communication

7.1 Description

Network communication is simplified by AGCE to allow simple names to be
used in code. While many things can be magically fixed by one’s development
environment, we can’t remove constraints on communication. Therefore, mes-
sages sent will not be received by the recipient at once. You should assume it
takes roughly the time it takes to sleep(1) for a message to be delivered.

7.2 Functions

7.2.1 send

send takes up to two parameters, but at least one. The first parameter is
the message content. The second parameter is the destination, defaults to the
other/next machine in the environment if not provided/empty.

 send (” He l lo ”)
 send (” Anyone there ?” , ” s e r v e r ”)

This code will send Hello to the other machine in the network, followed by
Anyone there? to a machine named ”server” (which happens to the the one
which also received the Hello-message).

39

CHAPTER 7. NETWORK COMMUNICATION 7.2. FUNCTIONS

7.2.2 receive

receive takes up to two parameters, but at least one. The first parameter is a
target variable where the received message will be stored. The second parameter
is the source we want to listen to messages from, and defaults to any machine
if not provided/empty.

 receive (a)
 receive (b , ” c l i e n t ”)
 print (a)
 print (b)

If this code was run in the same environment as the example in the send-
description, you would get the following output:

 He l lo
 Anyone there ?

It is important to note that receive does an implicit sleep(1) whenever it
cannot receive a message to try again in one execution cycle. This repeats until
it succeeds at receiving a message.

7.2.3 nreceive

Same as receive, but will not sleep if nothing is received. Instead, the variable
is set to null.

7.2.4 last

Whenever a message is received, the last-variable is set to the name of the
machine that the message was received from. To reply to a message in an
environment with multiple machines, one can do the following:

 receive (a)
 send (a + ” r e c e i v e d ! ” , last)

40

CHAPTER 7. NETWORK COMMUNICATION 7.2. FUNCTIONS

7.2.5 broadcast

Broadcast is a function that can be used to send a message to all machines in
an environment:

 broadcast (” I am here ! ”)

41

	AGOS
	Introduction
	Solving Tasks

	AGR
	Introduction
	Dictionary
	Data types
	Key Bindings

	Basic Operators
	Assignment
	Arithmetic Operators
	Mod Assign
	Comparison Operators
	Boolean Operators

	Basic Functions
	print
	input
	hasinput
	output
	not
	string
	int
	eval
	sleep
	secret

	Dot Functions
	.length
	.substring

	Flow Control
	Introduction
	Methods of flow control
	if, endif
	else
	elsif
	while, endwhile
	for, endfor
	Break
	Continue

	Advanced Data Structures
	Lists
	Instantiation
	Accessing elements
	Modifying elements
	.length
	.add
	.remove

	Buffers
	Instantiation
	Pointer Instantiation
	.insert
	.token
	.base
	Pointer Arithmetic Operations
	.offset
	.clear

	Functions
	Function declaration and use
	return
	Recursion
	Limitations

	Special Behaviours
	Integer limits
	References
	Assignment
	References And Functions

	Network Communication
	Description
	Functions
	send
	receive
	nreceive
	last
	broadcast

